Analysis of Extant Compound/Structured Document Systems

Authors: DMA TC Compound/Structured Document Subcommittee

Richard Sauvain (Xerox Corporation, Chair), Mitsuru Akizawa (Hitachi, Ltd.), Alan Babich (FileNET), Chuck Fay (FileNET), Jim Green (FileNET), Dennis Hamilton (InfoNuovo), Katsumi Kanasaki (Ricoh, Ltd.), Yoshifumi Sato (Hitachi, Ltd.)

Revision 0.00, 1999 July 28

Synopsis: This document summarizes the analysis of existing approaches to compound/structured documents and the way that they relate to the CSDocs model. This is referenced from Section 12 of various CSDocs proposals, including the CSDocs Foundation architecture.

1 Revision History

Revision 0.00, 1999 July 28, Dennis Hamilton

· Initial Extant Systems information extracted from Foundation Proposal for further refinement.

2 Table of Contents

11
Revision History

2
Table of Contents
1
3
Extant Systems with Similar Features and Related Experiences
4
3.1
Documentum
4
3.1.1
Objects
4
3.1.2
Naming and IDs
5
3.1.3
Creating a compound document
5
3.1.4
Delete model
6
3.1.5
Versioning model
6
3.1.6
Query model
6
3.1.7
Navigation model
6
3.1.8
Security model
7
3.1.9
Sharing model
7
3.1.10
Handling of object references that are embedded in document content
8
3.2
Interleaf
8
3.2.1
Objects
8
3.2.2
Naming and IDs
10
3.2.3
Creating a compound document
10
3.2.4
Delete model
11
3.2.5
Versioning model
11
3.2.6
Query model
11
3.2.7
Navigation model
11
3.2.8
Security model
11
3.2.9
Sharing model
11
3.2.10
Handling of object references that are embedded in document content
11
3.3
Lotus Domino.doc
11
3.3.1
Objects
12
3.3.2
Naming and Ids
13
3.3.3
Compound Document Support
13
3.3.4
Deleting
13
3.3.5
Versioning
13
3.3.6
Query
13
3.3.7
Navigation
14
3.3.8
Security
14
3.3.9
Referencing
14
3.4
FileNET IDM
14

3 Extant Systems with Similar Features and Related Experiences

[The extant systems survey is to be distilled down to the elements related to Compound/structured documents as well as similarities at the Foundation versus beyond-Foundation level. The general survey information is inappropriate in this proposal. Also, the use of an annotated table might be more useful with regard to lining up the feature sets along common axes.]

Edit all of this to reflect the focus on compound/structured documents: As part of our background research, we reviewed several repository products that have some form of compound document support. We characterized each product by considering the following areas:

· Objects

· Naming and IDs

· Creating a compound document

· Navigation

· Sharing (locking, checkin / out)

· Security

· Deleting a compound document

· Versioning

· Query

· Handling of object references that are embedded in document content

3.1 Documentum

This is a description of the compound document model supported by Documentum’s Enterprise Document Management System, version 3.2. Support for complex, intricately versioned compound documents is one of Documentum’s strong points.

3.1.1 Objects

Documentum compound documents are constructed using three objects: document, content, and containment.

Document: This object contains document properties (such as title, authors, keywords), an ordered list of content objects, and a content format. There is an optimization for the case where there is only once content object. A document has a primary format. The repository, which Documentum calls a docbase, contains a list of registered formats, and there must be a complete set of content objects in one of these formats.

The term simple document is used for documents made up entirely of content objects.

It is also possible to have a component which is another document. This is done using a list of relationship objects called containment objects. If a document has containment objects, it is called a virtual document.

Documents can be contained in folders, which in turn may be in cabinets. Folder membership is always referential (in the DMA sense of the term).

Containment: stores information about a component of a virtual document. Has object Ids of both parent and child, an order number representing the component’s position in the virtual document, and a version label.

Content: This object stores information about the format and location of a content file. It contains an integer ‘page number’ - really the position of the content element in the document - and an encoded handle to the actual file location of the content file. Documentum is a closed repository—all content is copied into a secure portion of the file system, and renamed with numeric file names.

A content object can be shared among documents. It contains a list of parent object Ids, as well as a list of ‘page numbers’ giving the order in each parent document.

Renditions in Documentum are at the content object level—they are the same “page” in another content format. There is provision for both automatic generation on demand by the server, and for manual generation of renditions. Alternate renditions can be stored persistently as content objects with the same page number as the primary rendition, but with a different format and a flag indicating that they are client-generated or server-generated.

Documentum has a notion of transient and persistent objects. All the above are persistent, and indeed are implemented with tables in a relational database.

3.1.2 Naming and IDs

Objects are identified by a 64-bit GUID that contains a docbase ID, an object class, and an instance number. The GUIDs are usually represented at the repository API by 16 character hex strings.

Document objects also have a string-valued object name whose value is user-defined.

3.1.3 Creating a compound document

The Documentum API has distinct calls for adding content objects (AppendFile) and adding other documents (AppendPart). AppendPart handles the creation of the Containment object that links in a component document. The usual procedure is to first create the document level components of the compound document, then to create a new document object and call AppendFile and AppendPart to add content objects and documents, respectively. The resulting document may then be linked into folders or even other cabinets.

3.1.4 Delete model

Documentum’s default delete behavior is to refuse to destroy or prune an object that belongs to a virtual document. This enforces referential integrity. This default behavior can be turned off on a server-wide basis if the users are willing to deal with the consequences.

So in general the strategy for deleting a virtual document is similar to that of deleting a DMA container. Delete all the components, working bottom up -- then you can delete the virtual document.

3.1.5 Versioning model

Simple or virtual documents can be versioned (what DMA calls ‘branched versioning’ is supported). Documents have both numeric (system generated) and textual (user supplied) version labels - there is also a distinguished version known as CURRENT.

When you add a component to a virtual document, you can choose early binding or late binding, terms which specify how to pick the version to be added. In late binding, you do not specify a version label, and the version is determined later when the document is accessed. In early binding, you pick a particular version in advance by specifying either an absolute version number (which never changes), or a symbolic version label (like “CURRENT”, which can be moved from version to version).

3.1.6 Query model

The Documentum query language (DQL) is a superset of SQL. DQL has constructs like “IN DOCUMENT” to narrow down a search to components of a document, “DESCEND” to say whether to search only direct (first level) components, or to also include indirectly contained components, and “WITH” to control late binding. ‘late binding’ is when you add a component associating the entire version tree of the component and specify at query time which version is to be looked at.

All documents (virtual or not) have a set of pre-defined and searchable attributes. The set includes title, author, subject, keywords, creation date, and others. As in DMA, it is possible for users to define subclasses of documents, folders, or other objects with additional searchable properties.

3.1.7
Navigation model

In the Documentum API, navigation is done by executing a query, rather than using methods specific to navigation.

For instance since the component objects in a virtual document all have a searchable ‘parent object’ property, you find children by searching for all documents or content objects that have a given parent.

Going the other way (from child to parent) is usually done by obtaining an ID-valued parent property from the child, then using that in a query to obtain the needed properties of the parent. Content objects contain a list of parent Ids (since content can be shared). Documents contain a list of parent folder Ids and a list of Containment objects, which in turn have the parent ID of the containing virtual document.

3.1.8
Security model

Documentum has object level security. The system provides two models for enforcing object level permissions: use of Access Control Lists (ACLs), and the Unix model of assigning permissions at the owner, group, and world levels. Both models can be turned off, so that there is no security. When a document object is created, security attributes for both modes are set.

Documentum has seven levels of permissions: none, browse, read, relate, version, write, delete. Having a permission later in this list includes all permissions before it. ‘browse’ lets you look at attributes but not content. ‘relate’ means a user can add an annotation to the object.

An ACL is a list of users and groups, with permission levels for these users and groups. ACLs can be attached to documents, folders, and indeed most persistent objects.

There is optional folder level security. When this is turned on, permissions are checked not only on the object, but also on any folders or cabinets which contain the object. With folder security turned on, for example, versioning a document requires version permission on the document object, and at least write permission for the folder or cabinet in which the document is stored.

Documents are assigned a primary cabinet when created, and this is the one that will be used for cabinet level security checking. They may then be linked into other cabinets or folders. All folder containment is referential.

3.1.9 Sharing model

Documents can be checked out. When this happens, no one else can modify the document object. After making changes, the document can be saved (which does not create a new version), or checked in (which does).

Checking out a virtual document does not lock component documents, however virtual documents can be frozen, which means no one can modify any of the components.

One can also fetch document content, which gives you a copy but does not prohibit others from changing the original.

3.1.10 Handling of object references that are embedded in document content

This is completely up to the client application

3.2 Interleaf

This is a description of the compound document models supported by Interleaf 6 (I6), a compound document authoring product similar to FrameMaker, and by RDM, Interleaf's document management repository. These are separate products based on different market needs. They can be used together, but they are based on different underlying document models suited to their markets. Interleaf has other products, including BladeRunner, a new XML authoring product that will ship later this summer, but this survey will cover only I6 and RDM.

(Disclaimer: This description is based on publicly-available information; it is possible that errors have been made in interpreting that information. This is not intended to be a definitive description of these Interleaf products, but more as a general indication of existing practice.)

I6 is an authoring tool designed for users who assemble and publish large documents in workgroup environments and have reached the limits of their word processing packages. I6 features a visual desktop with folders, drawers and cabinets to store and organize documents in a familiar manner. It provides a graphical book container for building and controlling multiple documents in books, and even books within books. It supports network style sheets or "book catalogs" for reformatting documents or document collections for print, Internet, or CDROM by globally controlling the format and contents.

I6 includes bi-directional, compound text and graphics filters for Microsoft Word and WordPerfect that ensure round-trip data integrity. It has the ability to assemble automatically multiple versions of a document from a single source. Lastly, it has an Active Link Tool for live linking to external data files that contain non-OLE data, and DBLink for extracting information from one or more Oracle, Sybase, or ODBC-compliant databases into a compound document.

RDM is a repository designed for complete document lifecycle management with built-in workflow, annotations, versioning, and full text search and retrieval. In addition, RDM offers configuration management for dynamic tracking and control of compound document configurations, including detailed bills-of-material, an audit history, and "where-used" information.

3.2.1 Objects

At a high level, Interleaf 6 documents separate presentation semantics from the logical structure of a document. Specifically, I6 supports the notion of a catalog, similar in concept to a style sheet. The catalog maps specific document elements (tags) to presentation behavior.

Catalogs are separate files that are associated with a document at run time by their relative position in the file system.

Catalogs and I6 documents have a 1:N relationship, i.e., a single catalog can be used to describe the presentation semantics of a collection of I6 documents. This can be viewed as a form of property inheritance (i.e., I get my font definition for <para> from a catalog contained in an I6 book somewhere). This has interesting implications for a query model (find me all paragraphs that currently use this catalog's paragraph presentation definition).

I6 presents a desktop metaphor to users. Within the I6 desktop, there are hierarchical structures - drawers, folders, books, documents. An I6 book can contain many documents, including special documents like TOCs, back of book indices, etc. Information is organized into books and collections so that changes in one document ripple immediately across document sets.
I6 supports auto-numbering streams. There is one default stream in a document. Other streams may exist for items like figures, tables, etc.

Even though books are modeled as containers, books are the place in the Interleaf 6 metaphor where you need more than containment, e.g., to handle auto-numbering streams, index generation, TOC generation, pagination, etc. A lot of specialization of a DMA Container subclass would be needed to handle all these semantics. I6 has different models for simple documents and collections of documents. TOCs across documents, auto-numbering schemes across documents, etc., are necessary for books.

An I6 document contains document elements. I6 ships with a default set of elements such as paragraphs, tables, frames, images, etc. A user may create user-defined elements that are defined in a catalog, similar to Word styles.
Initially the Interleaf document structure was modeled as a linear list of tags. Later, the concept of microdocuments was introduced. A microdocument is similar to a <subdoc> element in SGML, or an embedded OLE component in the Windows world. Within a microdocument different elements may exist, etc. Microdocuments are embedded content; they are not separately addressable documents.

I6 on WindowsNT is an OLE container, so you can create embedded or externally referenced OLE components within an I6 document.

The I6 graphics model is fairly sophisticated. It supports bitmapped images, B(zier curves, vector graphics, etc. Bitmapped images may be stored inline within a graphics instance, or they may be referenced as an external file. The link mechanism used in this case is simply a file path.

Elements may contain user-defined attributes. These may be defined for a single document, or used by many documents by defining in a catalog.

I6 supports the notion of "effectivity". This is similar in concept to a conditional compile of a software program. Users will employ effectivity to create a single document with multiple languages contained, with each logical element being replicated many times, with different content, and a different value for an effectivity tag. For example, each paragraph instance would be provided in English, French and German. By setting the value of an effectivity tag in an external catalog, the user can change an entire book from English->Japanese.

The I6 binary file format is proprietary and undocumented. I6 can save documents in an ASCII version that is documented, and looks like a proprietary markup language.

I6 supports several different link notions. Intra-document and inter-document links exist.

Dynamic database queries may be embedded within an Interleaf document using a proprietary component called DBlink that stores and executes queries against SQL databases.

Interleaf also supports the notion of "publishing" I6 documents/books into a lightweight, final form called WorldView. The WorldView format is a PDL that is a competitor to PDF. WorldView the product is a competitor to Adobe Acrobat, Adobe Catalog, etc. WorldView collections are groups of I6 documents that have had a particular presentation format applied to them (through the use of a catalog). WorldView documents contained in WorldView collections are also full-text indexed using Fulcrum.

RDM has a complex object model of its own, with documents, containers, versions, global and local objects. However, it has a relatively simple object model for structured and compound documents when compared to I6. RDM takes in an I6 compound document as a single chunk, rather than a set of components. When an I6 compound document with a link to an external file is checked in, RDM has no visibility inside the document for following the link.

3.2.2 Naming and IDs

I6 can link external objects like images or documents via file system path name, which allows these objects to be shared. It also has a linking method for extracting data from external databases. It's not clear if I6 documents themselves have IDs other than their file system path name, but it seems safe to assume they also have a title or name.

RDM assigns unique Ids to objects. It distinguishes between global objects and local objects. Global objects are searchable and independently persistent. Local objects are only referenced within a global object, like DMA's dependently persistent objects. Local objects are not separately searchable or addressable. It's not clear if or how I6 compound documents are mapped to RDM global and local objects.

3.2.3 Creating a compound document

I6 has features for creating compound documents like books that include other documents. From I6, you can check a book or document and catalog into RDM as a single chunk or as a set of global objects that are unrelated as far as RDM is concerned.

3.2.4 Delete model

When RDM takes in a compound document as a single chunk, it has no opportunity to create a referential integrity violation at deletion time: the whole chunk is deleted. When an I6 compound document with embedded links to external files is checked in or deleted, RDM has no visibility inside the document for checking, following, or maintaining the links. So RDM has no responsibilities for referential integrity.

If an I6 compound document with links to other files is deleted, the links are deleted but not the target files.

3.2.5 Versioning model

RDM has a fairly complex versioning model associated with a workflow representing a document review cycle. A document version goes all the way through the review cycle and is completed at the end of the cycle. I6 has no explicit versioning mechanism.

3.2.6 Query model

RDM is not knowledgeable about links between global objects, so you can query for all global objects, but you can't tell in the query that the objects are related.

3.2.7 Navigation model

RDM provides the ability to navigate from global objects to related local objects, but within an I6 compound document you use I6 to navigate among its components.

3.2.8 Security model

I6 security is provided by the underlying file system. Details of RDM security features are not known.

3.2.9 Sharing model

I6 can share each document among many books, and each catalog among many documents.

In the other sense of sharing documents among multiple authors, RDM supports version management, but details are not known.

3.2.10 Handling of object references that are embedded in document content

I6 knows about embedded object references; RDM does not.

3.3 Lotus Domino.doc

This is a description of the Domino.doc API as of October 1998.

3.3.1 Objects

The Library

The Library is the entry point into Domino.Doc. It is the "main view" or the "home page" from which users navigate the storage system, perform searches, list checked-out documents, and access administrative functions such as setting and changing document and binder type definitions and attributes.

A library can contain zero or more file rooms.

File rooms

The file room provides a way to logically group individual file cabinets to facilitate navigation. All file cabinets are contained in a file room.

When creating a new file cabinet, the user can add it to an existing file room or create a new file room.

File cabinets

Domino.Doc uses file cabinets to organize and manage binders and documents. File cabinets are Notes database (.nsf) files that reside on the Domino server.

Binders

The Domino.Doc binder is a container within a file cabinet that is used to group related documents logically.

A given binder can exist in only one file cabinet.

A binder can contain “real” documents, or “links” to documents that reside in other binders.

Each binder has attributes that facilitate organization and retrieval. Attributes associated with every binder include the title, type, author, creation date, modification date, and number of documents. Application attributes, presented in the form of an Index Card, are specific to the binder type.

Documents

A "document" in Domino.Doc is the information that is to be managed. It can be a data file -- such as a word processor document or a spreadsheet, an OLE object, or a Notes document -- that is given a descriptive title and saved to a binder in a file cabinet.

Each document has attributes that facilitate document organization and retrieval. System attributes are associated with every document and may include the document author, creation date, date of last modification, document title, and so forth. Application attributes, presented in the form of an Index Card, are specific to the individual application and may include the project name, document type, proposal number, and so forth.

A single document can have multiple attachments of any file type.

A document object resides inside a single binder. Links to a document can be made inside other binders.

3.3.2 Naming and Ids

Domino.Doc objects are each identified by a 64-bit GUID, generated automatically by the system when the object is created. Each object has a set of properties and attributes that are customizable by the user. Client applications of Domino.Doc also use the object’s name or title to identify the object in a simple manner.

3.3.3 Compound Document Support

Domino.Doc (version 2.0) currently has no support for compound documents. Documents are self-contained objects that have no relationships with other documents. A binder object is used for the containment of documents, but there is no support for establishing any type of complex relationships between the documents contained within it. I do believe that support for compound documents will be supplied in future versions of Domino.Doc.

3.3.4 Deleting

Any object (File Rooms and below) can be deleted as long as the user has permission to do so. Objects contained inside a parent object that is being deleted will be deleted as well.

There is no current support in the Domino.Doc API for deletion of objects.

3.3.5 Versioning

Using Lotus Notes as the underlying mechanism, Domino.Doc provides a rich set of versioning capabilities. All documents are versioned when they are stored into the system. Documents can be put into an approval cycle, in which a document must go through a process that involves a list of users that must review and verify the document. All versions are automatically labeled numerically by the system. Descriptions of each versioned document are customizable by the user.

Users with adequate permission can check-out and check-in binders and documents. When a document or binder is checked-out, that object is locked and cannot be modified by any other user of the system.

3.3.6 Query

Domino.Doc supports the same type of querying model that is present in Lotus Notes called “Full-Text Indexed Search”. A query in Domino.Doc consists of a statement or string similar to an SQL statement, but much simpler. A typical query would request objects that have specific attributes meet certain criteria. Queries can refer to both document content and document attributes, as in "documents with AUTHOR = 'Smith' that contain the word 'cooling'".

Domino today can full text search any file attachment whose file format does not "hide" the text of the document. For example, Lotus WordPro has all kinds of formatting gibberish in the file but in one form or another the text of the document is still intact so that WordPro documents can be full text searched. Word is a good example of an application whose file format does not contain the text in readable form. Thus Word documents cannot be searched. The upcoming V5 release of Domino will solve this problem.

Binders and documents can be attached to profile objects. These objects allow a user to create customized attributes for that object. The query model also supports queries on profile attributes. However the API does not currently support querying on binder attributes. It is believed that this will be in a future release.

3.3.7 Navigation

Navigation in Domino.Doc can be done through the objects or through querying. By using the object method, children objects can be enumerated within a parent object, and the Domino.Doc tree hierarchy can be traversed through this type of repeated enumeration. Querying can lead a user to a specific object, which can then be traversed to retrieve and children objects.

3.3.8 Security

Domino.Doc relies on the underlying Lotus Notes system to provide security for its documents. Each object in Domino.Doc can be separately assigned access lists of users and groups who can do certain operations on that object. Each user or group can have specific access rights that are different from the other members of the access list.

Access rights include versioning of documents and binders as well. A user who has sufficient control rights of an object can also set that object’s access control list.

3.3.9 Referencing

Domino.Doc supports minimal referencing. A document object must have one true binder as its parent object. Another binder may contain that document but only as a “link”. There is no current support in the Domino.Doc API for creating links or references to a document from a binder.

3.4 FileNET IDM

This describes the compound document capabilities that are currently available (as of July 1998) in FileNET's IDM document management system.

The CD capabilities are exposed through either of two application interfaces - one that is for documents created with general office applications, and the other a very specific implementation that interfaces several CAD packages (AutoCAD, MicroStation, and others) to provide total control of drawing configurations in a multi-user CAD environment.

General Office Application

The general office implementation allows the user to create compound documents by creating links in the DMS (relationship objects) that connect a parent (or container) document with one or more target documents. The target documents may themselves be compound documents.

All of the documents in the compound document are checked-in and managed by the DMS.

By default, these links connect a specific version of the parent document with the latest version of the target component. When checking out the parent document, the user is given the option of either checking out or copying each of the target components. Each of the documents in a compound document (including all target components), are stored as independent documents, and may have independent authoring and update cycles.

CAD - (Computer Aided Design)

The CAD implementation is significantly more complex and capable. In a large drafting organization, CAD drawings are usually configured so that specific portions of a single drawing are stored as separate files (building structure, electrical wiring, heating and air conditioning, etc., each in a separate file.) A master file contains the list of all of these separate files, and the CAD application will read the master file and display one or more of these "layers" for the draftsman to modify. Each of these layers will have its own approval cycle, and specific versions will be identified as applicable for certain configurations of the entire drawing.

The CAD-specific application features tight integration with a specific CAD package, and allows multiple user the ability to independently modify each of the component files that make up an entire CAD drawing.

It maintains each component as a separate document (with associated version history), and maintains links (relationship objects) that connect specific versions of each component. It supports mark-up and red-lining with links to other drawings, and provides the approval and drawing configuration control necessary for the CAD environment.

